Artificial Neural Network Based Speed and Torque Control of Three Phase Induction Motor

نویسنده

  • Manjunath Prasad
چکیده

Direct Torque Control (DTC) of Induction Motor drive has quick torque response without complex orientation transformation and inner loop current control. DTC has some drawbacks, such as the torque and flux ripple. The control scheme performance relies on the accurate selection of the switching voltage vector. This proposed simple structured neural network based new identification method for flux position estimation, sector selection and stator voltage vector selection for induction motors using direct torque control (DTC) method. The ANN based speed controller has been introduced to achieve good dynamic performance of induction motor drive. The Levenberg-Marquardt back-propagation technique has been used to train the neural network. Proposed simple structured network facilitates a short training and processing times. The stator flux is estimated by using the modified integration with amplitude limiter algorithms to overcome drawbacks of pure integrator. The conventional flux position estimator, sector selector and stator voltage vector selector based modified direct torque control (MDTC) scheme compared with the proposed scheme and the results are validated through both by simulation and experimentation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust Backstepping Control of Induction Motor Drives Using Artificial Neural Networks and Sliding Mode Flux Observers

In this paper, using the three-phase induction motor fifth order model in a stationary twoaxis reference frame with stator current and rotor flux as state variables, a conventional backsteppingcontroller is first designed for speed and rotor flux control of an induction motor drive. Then in orderto make the control system stable and robust against all electromechanical parameter uncertainties a...

متن کامل

Seven-Level Direct Torque Control of Induction Motor Based on Artificial Neural Networks with Regulation Speed Using Fuzzy PI Controller

In this paper, the author proposes a sensorless direct torque control (DTC) of an induction motor (IM) fed by seven-level NPC inverter using artificial neural networks (ANN) and fuzzy logic controller. Fuzzy PI controller is used for controlling the rotor speed and ANN applied in switching select stator voltage. The control method proposed in this paper can reduce the torque, stator flux and to...

متن کامل

A Review on Direct Torque Control for Induction Motor

The aim of this paper is to review the origin and developments of Direct Torque Control (DTC), an advanced control technique of induction motor drives yielding superior performance. The direct torque control is one of the excellent control strategies available for torque control of induction machine. It is considered as an alternative to Field Oriented Control (FOC) technique. The DTC is charac...

متن کامل

Artificial Neural Network Control of Vector Controlled Induction Motor

Many researches have been carried out to induction motors for starting, braking, speed reversal and speed control, because they are relatively cheap, reliable and rugged machines due to absence of slip rings or commutators. Induction motors exhibit highly coupled, nonlinear time varying system which is difficult to control since some state variables are difficult to be measured. However, recent...

متن کامل

A Current-Based Output Feedback Sliding Mode Control for Speed Sensorless Induction Machine Drive Using Adaptive Sliding Mode Flux Observer

This paper presents a new adaptive Sliding-Mode flux observer for speed sensorless and rotor flux control of three-phase induction motor (IM) drives. The motor drive is supplied by a three-level space vector modulation (SVM) inverter. Considering the three-phase IM Equations in a stator stationary two axis reference frame, using the partial feedback linearization control and Sliding-Mode (SM) c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013